Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 197: 111102, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798520

RESUMO

The present study investigated adsorptive removal of toluene and ethylbenzene from the aqueous media via using biochar derived from municipal solid waste (termed "MSW-BC") in a single and binary contaminant system at 25-45 °C. The adsorption was evaluated at different pH (3-10), experimental time (up to 24 h), and initial adsorbate concentrations (10-600 µg/L) in single and binary contaminant system. A fixed-bed column experiment was also conducted using MSW-BC (0.25%) and influent concentration of toluene and ethylbenzene (4 mg/L) at 2 mL/min of flow rate. The adsorption of toluene and ethylbenzene on the MSW-BC was mildly dependent on the pH, and the peak adsorption ability (44-47 µg/g) was recorded at a baseline pH of ~8 in mono and dual contaminant system. Langmuir and Hill are the models that match the isotherm results in a single contaminant environment for both toluene (R2 of 0.97 and 0.99, respectively) and ethylbenzene (R2 of 0.99 and 0.99, respectively) adsorption. In the binary system, the isotherm models matched in the order of Langmuir > Hill > Freundlich for toluene, whereas Hill > Freundlich > Langmuir for ethylbenzene. The adsorption in the batch experiment was likely to take place via cooperative and multilayer adsorption onto MSW-BC involving hydrophobic, π- π and n- π attractions, specific interaction such as hydrogen-π and cation-π interactions, and van der Waals interactions. The thermodynamic results indicate exothermic adsorption occurred by physical attractions between toluene and ethylbenzene, and MSW-BC. The breakthrough behavior of toluene and ethylbenzene was successfully described with Yoon-Nelson and Thomas models. The data demonstrate that the low-cost adsorbent derived from the municipal solid waste can be utilized to remove toluene and ethylbenzene in landfill leachate.


Assuntos
Resíduos Sólidos , Tolueno , Derivados de Benzeno , Carvão Vegetal , Cinética
2.
J Environ Manage ; 238: 323-330, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30870672

RESUMO

The remediation of volatile organic compounds (VOCs) from aqueous solution using Municipal solid waste biochar (MSW-BC) has been evaluated. Municipal solid waste was pyrolyzed in an onsite pyrolyzer around 450 °C with a holding time of 30 min for the production of biochar (BC). Physiochemical properties of BC were assessed based on X-Ray Fluorescence (XRF) and Fourier transform infra-red (FTIR) analysis. Adsorption capacities for the VOCs (m-xylene and toluene) were examined by batch sorption experiments. Analysis indicated high loading of m-xylene and toluene in landfill leachates from different dump sites. The FTIR analysis corroborates with the Boehm titration data whereas XRF data demonstrated negligible amounts of trace metals in MSW-BC to be a potential sorbent. Adsorption isotherm exhibited properties of both Langmuir and Freundlich which is indicative of a non-ideal monolayer adsorption process taking place. Langmuir adsorption capacities were high as 850 and 550 µg/g for toluene and m-xylene respectively. The conversion of MSW to a value added product provided a feasible means of solid waste management. The produced MSW-BC was an economical adsorbent which demonstrated a strong ability for removing VOCs. Hence, MSW-BC can be used as a landfill cover or a permeable reactive barrier material to treat MSW leachate. Thus, the conversion of MSW to BC becomes an environmentally friendly and economical means of solid waste remediation.


Assuntos
Eliminação de Resíduos , Compostos Orgânicos Voláteis , Carvão Vegetal , Resíduos Sólidos , Tolueno , Instalações de Eliminação de Resíduos , Xilenos
3.
Environ Geochem Health ; 41(4): 1739-1753, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28516245

RESUMO

The potential of biochar, produced from fibrous organic fractions of municipal solid waste (MSW), for remediation of benzene, one of the frequently found toxic volatile organic compounds in landfill leachate, was investigated in this study based on various environmental conditions such as varying pH, benzene concentration, temperature and time. At the same time, landfill leachate quality parameters were assessed at two different dump sites in Sri Lanka: Gohagoda and Kurunegala. MSW biochar (MSW-BC) was produced by slow temperature pyrolysis at 450 °C, and the physiochemical characteristics of the MSW-BC were characterized. All the leachate samples from the MSW dump sites exceeded the World Health Organization permissible level for benzene (5 µg/L) in water. Removal of benzene was increased with increasing pH, with the highest removal observed at ~pH 9. The maximum adsorption capacity of 576 µg/g was reported at room temperature (~25 °C). Both Freundlich and Langmuir models fitted best with the equilibrium isotherm data, suggesting the involvement of both physisorption and chemisorption mechanisms. Thermodynamic data indicated the feasibility of benzene adsorption and its high favorability at higher temperatures. The values of [Formula: see text] suggested physical interactions between sorbate and sorbent, whereas kinetic data implied a significant contribution of chemisorption. Results obtained from FTIR provided clear evidence of the involvement of functional groups in biochar for benzene adsorption. This study suggests that MSW biochar could be a possible remedy for benzene removal from landfill leachate and at the same time MSW can be a potential source to produce biochar which acts as a prospective material to remediate its pollutants while reducing the volume of waste.


Assuntos
Benzeno/isolamento & purificação , Carvão Vegetal/química , Resíduos Sólidos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Benzeno/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Sri Lanka , Termodinâmica , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/química
4.
RSC Adv ; 9(31): 17612-17622, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520596

RESUMO

Tea-waste is an abundant feedstock for producing biochar (BC) which is considered to be a cost effective carbonaceous adsorbent useful for water remediation and soil amendment purposes. In the present study, tea-waste BC (TWBC) produced at three different temperatures were subjected to nitric, sulfuric and hydrochloric acid modifications (abbreviated as NM, SM and HM respectively). Characteristics of the raw and modified BC such as ultimate and proximate analyses, surface morphology, surface acidity and functionality, point of zero charge, cation exchange capacity (CEC) and thermal stability were compared to evaluate the influence of pyrolysis temperature and of modifications incorporated. The amount of carboxylic and phenolic surface functionalities on TWBC was seen to decrease by 93.44% and 81.06% respectively when the pyrolysis temperature was increased from 300 to 700 °C. Additionally, the yield of BC was seen to decrease by 46% upon the latter temperature increment. The elemental analysis results provided justification for high-temperature BC being more hydrophobic as was observed by the 61% increase in H/C ratio which is an indication of augmented aromatization. The CEC was the highest for the low-temperature BC and was seen to further increase by NM which is attributed to the 81.89% increase in carboxylic functionalities. The surface area was seen to significantly increase for BC700 upon NM (∼27 times). The SM led to pore wall destruction which was observed in scanning electron microscopy images. Findings would enable the rational use of these particular modifications in relevant remediation and soil amendment applications.

5.
Arch Public Health ; 74: 21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242918

RESUMO

BACKGROUND: Iodine is an essential micronutrient used by the thyroid gland in the production of thyroid hormones. Both excessive and insufficient iodine intakes can cause thyroid diseases thus harmful to the human body. Inadequate iodine intake by human body causes Iodine Deficiency Disorders (IDD) and hypothyroidism. Excessive iodine intake causes Iodine Induced Hyperthyroidism (IIH). Universal Salt Iodization (USI) is the most effective way of preventing IDD. This study determined the concentrations of iodine species in commercial edible salt products, the stability of iodine at different conditions and iodine exposure at the consumer level. METHODS: The iodine contents of six commercial edible iodized salts were determined qualitatively and quantitatively for both iodide and iodate. Thereafter, the first three products of highest iodine contents, the stability of iodide at exposed to air and heat was measured after 24 hours. Risk assessment of exposure was done at four levels considering the WHO estimation. RESULTS: Results revealed that all of the salt products have excess iodine that is above the fortification level of 15-30 mg kg(-1) level in Sri Lanka. Iodide stability was reduced at the average percentages of 13.1, 10.7 and 11.3. The iodate loss percentages were 0, 5.7 and 0 at open air. The iodide loss percentages at the temperature of 50 °C were 4.6, 7.8 and 8.6 while at 100 °C, loss percentages were 11.1, 11.4 and 15.9 for the same salt products. The iodine exposure at lower consumption during cooking ranged 244.4-432.2 µg/day while 325.9-576.3 µg/day for medium consumption, 407.4-720.4 µg/day for moderate high salt consumptions and 488.8-864.4 µg/day for high salt consumptions. As a total 95.8 % cases can cause IIH and only 4.1 % of them can provide optimal iodine nutrition in a population. Iodine exposure without cooking ranged 305.5-540.3 µg/day for low salt consumption, 407.4-720.4 µg/day for medium consumption and 509.2-900.5 µg/day for moderate high consumption and 611.1-1080.6 µg/day for high salt consumptions. CONCLUSIONS: All of the incidents (100 %) of consumption without cooking at the household level can cause excessive iodine intake and IIH in a population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...